

STUDY OF MULTILAYER DEFECTS ON SUB-32NM HP EUV RETICLES

DIETER VAN DEN HEUVEL^A, RIK JONCKHEERE^A, TRISTAN BRET^B, MARKUS WAIBLINGER^B

A IMEC, B CARL ZEISS SMS

INTRODUCTION ML-DEFECTS

INTRODUCTION ML-DEFECTS STRATEGY

Final goal needs to be 0-defect blanks, but on short term a "safety net" needs to be available.

- I. Adequate BI to detect as many printing blank defects as possible
- Try to cover printing blank defects with absorber (mitigation by pattern shift)
- 3. Repair of defects that cannot be covered (compensation repair)
- 4. Repair of Blank defects missed by Bl

Ref.: EUVL Multilayer Mask Blank Defect Mitigation for Defect-free EUVL Mask Fabrication (Pei-Yang Yan, SPIE-2012)

INTRODUCTION CHALLENGES

I. Inspection (Optical)

- limited penetration depth in mirror
- difficult to predict printability of defect

- ⇒ ML defects only found by WI
- ⇒ Many detections BI don't print

2. Visualization

- In anticipation of AIMS, (integrated) AFM is essential
- Small trenches, contacts become challenge

4. Simulation

Learning:

- Shape, size, propagation, ...
- Limitations

INTRODUCTION CHALLENGES

See poster: "Improvements of Multi-Layer Defect Mapping with Advanced Inspection Technology", Lior Shoval et al.

2. Visualization

- In anticipation of AIMS, (integrated) AFM is essential
- Small trenches, contacts become challenge

See presentation: "Rigorous Modeling and Optimization of Multilayer Defect Repair", A. Erdmann et al.

So far results were obtained on 40/32nm L/S

(see R. Jonckheere et al. EUVL 2011)

OUTLINE

- Lines and spaces: 27nm and 25nm HP
 - Is it still possible to visualize ML defects < 10nm high when the trenches become smaller?
 - How realistic is compensation repair with these dimensions?
- Contact Holes: 30nm HP
 - Even more challenging for AFM
 - How to perform compensation repair on contacts?

CARL ZEISS MeRiT® HR TECHNOLOGY E-BEAM BASED REPAIR

Etching: volatilization of material Used for opaque absorber defects

Deposition: Immobilization of precursor Used for clear absorber defects

REPAIR ML DEFECTS ON 2XNM L/S I) VISUALIZATION

REPAIR ML DEFECTS ON 2XNM L/S 2) COMPENSATION REPAIR

What is the influence of off axis illumination (dipole 60X sigma 0.8/0.4)?

REPAIR ML DEFECTS SIMULATION

S-LITHO EUV

Bump 6nm, 27nm L/S 40nm FWHM, BF

COMPENSATION REPAIR ON 27NM L/S

Note: markers only placed to be able to know exact location on wafer

OUTLINE

- Lines and spaces: 27nm and 25nm HP
 - Is it still possible to visualize ML defects <5nm when the trenches become smaller?
 - How realistic is compensation repair with these dimensions?
- Contact Holes: 30nm HP
 - Even more challenging for AFM
 - How to perform compensation repair on contacts?

EXPERIMENTAL SETUP

- Large area covered with 30nm dense CH
- Focus on natural defects

Total of 29 ML defects (8 only found by WI)

REPAIR ML DEFECTS ON 30NM CH I) VISUALIZATION

Mask Review with Integrated AFM

REPAIR ML DEFECTS ON 30NM CH 2) REPAIR

Observations on this example:

- Wafer print is improved, yet not satisfactorily
- Rework is possible
- **limited** compensation **process window** on this BI-found ML bump (see also presentation A. Erdmann)

REPAIR ML DEFECTS ON 30NM CH

3) SUCCESSFUL REPAIR

CONCLUSIONS

- Final goal should remain 0-defect blanks, but compensation repair can provide back-up scenario
 - One repair shape cannot compensate reflection loss for each illumination setting
 - Certain defect characteristics inside the ML can limit compensation process window (AIMS)

Note: Current repairs focused on fairly solid bumps found by BI => next step will be more subtle defects found by WI only

- E-beam repair on 2Xnm L/S + 30nm dense CH:
 - Repair strategies and techniques developed on 4X and 3Xnm features are still valid, including compensation repair
 - AFM's continued value is demonstrated

APPENDIX

REPAIR ON 30NM CH OPAQUE ABSORBER DEFECTS

REPAIR ON 30NM CH FOREIGN MATERIAL REMOVAL

